Impacts and Collisions

5. A smooth sphere A, of mass 3 kg , collides directly with another smooth sphere B, of mass 1 kg , on a smooth horizontal table.

Before impact A and B are moving in
 opposite directions with speeds of $5 \mathrm{~m} \mathrm{~s}^{-1}$ and $2 \mathrm{~m} \mathrm{~s}^{-1}$, respectively.
The coefficient of restitution for the collision is $\frac{1}{7}$.
Find (i) the speed of A and the speed of B after the collision
(ii) the loss in kinetic energy due to the collision
(iii) the magnitude of the impulse imparted to B due to the collision.
5. A smooth sphere A, of mass 2 kg , collides directly with another smooth sphere B, of mass 3 kg , on a smooth horizontal table.

A and B are moving in the same direction with speeds of $5 \mathrm{~ms}^{-1}$ and
 $4 \mathrm{~ms}^{-1}$ respectively.
The coefficient of restitution for the collision is $\frac{2}{3}$.
Find (i) the speed of A and the speed of B after the collision
(ii) the change in the kinetic energy of A due to the collision
(iii) the magnitude of the impulse imparted to A due to the collision.
5. A smooth sphere A, of mass 5 kg , collides directly with another smooth sphere B, of mass 2 kg , on a smooth horizontal table.

Before impact A and B are moving in
 opposite directions with speeds $3 \mathrm{~m} / \mathrm{s}$ and $5 \mathrm{~m} / \mathrm{s}$, respectively.
The coefficient of restitution for the collision is $\frac{3}{4}$.

Find (i) the speed of A and the speed of B after the collision
(ii) the loss in kinetic energy due to the collision
(iii) the magnitude of the impulse imparted to B due to the collision.

2008
5. A smooth sphere A, of mass 6 kg , collides directly with another smooth sphere B , of mass 5 kg , on a smooth horizontal table.

A and B are moving in opposite directions with speeds of $4 \mathrm{~m} / \mathrm{s}$ and
 $2 \mathrm{~m} / \mathrm{s}$ respectively.

The coefficient of restitution for the collision is $\frac{1}{10}$.

Find (i) the speed of A and the speed of B after the collision
(ii) the loss in kinetic energy due to the collision
(iii) the magnitude of the impulse imparted to A due to the collision.
5. A smooth sphere A, of mass 2 kg , collides directly with another smooth sphere B, of mass 3 kg , on a smooth horizontal table.
A and B are moving in the same direction with speeds of $5 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$
 respectively.
The coefficient of restitution for the collision is $\frac{2}{3}$.
Find
(i) the speed of A and the speed of B after the collision
(ii) the loss in kinetic energy due to the collision
(iii) the magnitude of the impulse imparted to B due to the collision.
5. A smooth sphere A, of mass 2 kg , collides directly with another smooth sphere B, of mass 3 kg , on a smooth horizontal table.
A and B are moving in the same direction with speeds of $5 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$
 respectively.
The coefficient of restitution for the collision is $\frac{2}{3}$.
Find
(i) the speed of A and the speed of B after the collision
(ii) the loss in kinetic energy due to the collision
(iii) the magnitude of the impulse imparted to B due to the collision.
5. A smooth sphere A, of mass 7 kg , collides directly with another smooth sphere B, of mass 3 kg , on a smooth horizontal table.
A and B are moving in opposite directions
 with speeds of $2 \mathrm{~m} / \mathrm{s}$ and $1 \mathrm{~m} / \mathrm{s}$ respectively.
The coefficient of restitution for the collision is $\frac{1}{3}$.
Find (i) the speed of A and the speed of B after the collision
(ii) the loss in kinetic energy due to the collision
(iii) the magnitude of the impulse imparted to A due to the collision.

2005
5. A smooth sphere P, of mass 2 kg , moving with a speed of $10 \mathrm{~m} / \mathrm{s}$ collides directly with a smooth sphere Q , of mass 3 kg , moving in the same direction with a speed of $5 \mathrm{~m} / \mathrm{s}$ on a smooth
 horizontal table.

The coefficient of restitution for the collision is e.
After the collision, sphere Q continues to travel in the same direction but with a speed of $8 \mathrm{~m} / \mathrm{s}$.
(i) Find the speed of P after the collision.
(ii) Find the value of e.
(iii) Find the fraction of kinetic energy lost due to the collision.
(iv) Find the magnitude of the impulse imparted to each sphere.
5. (a) A smooth sphere P , of mass 5 kg , moving with a speed of $2 \mathrm{~m} / \mathrm{s}$ collides directly with a smooth sphere Q , of mass 3 kg , moving in the opposite direction with a speed of $u \mathrm{~m} / \mathrm{s}$ on a smooth horizontal table.
The coefficient of restitution for the collision is $\frac{1}{2}$.
As a result of the collision, sphere P is brought to rest.
(i) Find the value of u.
(ii) Find the speed of Q after the collision.
(b) A ball is dropped from rest from a height of 1.25 m onto a smooth horizontal table. The ball hits the table with a speed of $v \mathrm{~m} / \mathrm{s}$ and then rebounds to a height of h metres above the table.
The coefficient of restitution between the ball and the table is 0.8 .
(i) Find the value of v.
(ii) Find the value of h.

2003
5. A smooth sphere P, of mass 2 kg , moving with a speed of $3 \mathrm{~m} / \mathrm{s}$ collides directly with a smooth sphere Q , of mass 3 kg , moving in the opposite direction with a
 speed of $1 \mathrm{~m} / \mathrm{s}$ on a smooth horizontal table.
The coefficient of restitution for the collision is e.
As a result of the collision, sphere P is brought to rest.
(i) Find the speed of Q after the collision.
(ii) Find the value of e.
(iii) Find the fraction of kinetic energy lost due to the collision.
5. A smooth sphere P, of mass 2 kg , moving with a speed of $6 \mathrm{~m} / \mathrm{s}$ collides directly with a smooth sphere Q , of mass 4 kg , moving in the same direction with a speed of $4 \mathrm{~m} / \mathrm{s}$ on a smooth horizontal table.
The coefficient of restitution for the collision is $\frac{1}{2}$.
(i) Find the speed of P and the speed of Q after the collision.
(ii) Find the loss in kinetic energy due to the collision.
5. A smooth sphere P, of mass 4 kg , moving with a speed of $2 \mathrm{~m} / \mathrm{s}$ collides directly with a smooth sphere Q , of mass 2 kg , travelling in the opposite direction with a speed of $2 \mathrm{~m} / \mathrm{s}$ on a smooth horizontal table. The coefficient of restitution for the
 collision is $\frac{1}{3}$.
Find the speed of P and the speed of Q after the collision.
As a result of this collision Q goes on to collide directly with a stationary smooth sphere R , of mass 4 kg . The collision between Q and R causes Q to come to rest.

Find the coefficient of restitution for the collision between Q and R .
5. Two smooth spheres P and Q, of masses 4 kg and 2 kg respectively and travelling in opposite directions with speeds of $5 \mathrm{~m} / \mathrm{s}$ and $4 \mathrm{~m} / \mathrm{s}$ respectively, collide directly on a smooth horizontal table.
The coefficient of restitution between the spheres
 is e.
As a result of the collision P continues to move in the same direction with a speed of $e \mathrm{~m} / \mathrm{s}$.
(i) Find the value of e.
(ii) Find the loss in kinetic energy due to the collision.

ANSWERS

2011

(i) $\mathrm{v}_{1}=3 \mathrm{~m} \mathrm{~s}^{-1}$ and $\mathrm{v}_{2}=4 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) KE lost $=18 \mathrm{~J}$
(iii)Impulse $=6 \mathrm{~N} \mathrm{~s}$ or $6 \mathrm{kgms}^{-1}$

2010

(iv) $\mathrm{v}_{1}=4 \mathrm{~m} \mathrm{~s}^{-1}$ and $\mathrm{v}_{2}=14 / 3 \mathrm{~m} \mathrm{~s}^{-1}$
(v) Change in KE of $\mathrm{A}=9 \mathrm{~J}$
(vi) Impulse $=2 \mathrm{~N} \mathrm{~s}$

2009

(i) $\mathrm{v}_{1}=-1 \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{v}_{2}=5 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) KE lost $=20 \mathrm{~J}$
(iii)Impulse $=20 \mathrm{~N} \mathrm{~s}$

2008

(i) $\mathrm{v}_{1}=1 \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{v}_{2}=1.6 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) KE lost $=48.6 \mathrm{~J}$
(iii)Impulse $=18 \mathrm{Ns}$

2007

(i) $\mathrm{v}_{1}=2 \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{v}_{2}=4 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) KE lost $=3 \mathrm{~J}$
(iii)Impulse $=6 \mathrm{Ns}$

2006

(i) $\mathrm{v}_{1}=0.8 \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{v}_{2}=1.8 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) KE lost $=8.4 \mathrm{~J}$
(iii)Impulse $=8.4 \mathrm{~N} \mathrm{~s}$

2005
(i) $\mathrm{v}_{1}=5.5 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) $\mathrm{e}=0.5$
(iii)Fraction of KE lost $=9 / 110 \%$
(iv)Impulse $=9 \mathrm{~N} \mathrm{~s}$

2004 (a)
(i) $\mathrm{u}=14 / 9 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) $\mathrm{v}_{2}=16 / 9 \mathrm{~m} \mathrm{~s}^{-1}$

2004 (b)
$\mathrm{v}=5 \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{h}=0.8 \mathrm{~m}$

2003

(i) $\mathrm{v}_{2}=1 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) $\mathrm{e}=0.25$
(iii)Fraction $=6 / 7 \%$

2002
(i) $\mathrm{v}_{1}=\mathrm{m} \mathrm{s}^{-1}, \mathrm{v}_{2}=5 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) KE lost $=2 \mathrm{~J}$

2001
(i) $\mathrm{v}_{1}=2 / 9 \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{v}_{2}=14 / 9 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) $\mathrm{e}=1 / 2$

2000 (a)
(i) $e=1 / 2$
(ii) loss in $\mathrm{KE}=40.5 \mathrm{~J}$

