Relative Velocity

2. Ship A is 126 km due west of ship B.

A is moving at a constant speed of $50 \mathrm{~km} \mathrm{~h}^{-1}$ in the direction east α north where $\tan \alpha=\frac{24}{7}$.
B is moving due north at a constant speed of $48 \mathrm{~km} \mathrm{~h}^{-1}$.

Find (i) the velocity of A in terms of \vec{i} and \vec{j}
(ii) the velocity of B in terms of \vec{i} and \vec{j}
(iii) the velocity of A relative to B in terms of \vec{i} and \vec{j}.

Ship A intercepts ship B after t hours.
Find (iv) the value of t
(v) the distance each ship travels in this time t.
2. A river is 100 metres wide and has parallel banks.

Boat B departs from point P on its western bank and lands at point Q on its eastern bank.

The actual velocity of the boat

$$
\text { is } 5 \vec{i}+12 \vec{j} \mathrm{~ms}^{-1} .
$$

Cyclist C travels due north at a constant speed of $3 \mathrm{~ms}^{-1}$ along the eastern bank of the river.

Find (i) the velocity of C in terms of \vec{i} and \vec{j}
(ii) the velocity of B relative to C in terms of \vec{i} and \vec{j}
(iii) the magnitude and direction of the velocity of B relative to C
(iv) the time it takes B to cross the river
(v) $|P Q|$, the distance from P to Q.
2. A ship P is moving north at a constant speed of $20 \mathrm{~km} / \mathrm{h}$.

Another ship Q is moving south-west at a constant speed of $10 \sqrt{2} \mathrm{~km} / \mathrm{h}$.

At a certain instant, P is positioned 50 km due west of Q .

Find (i) the velocity of P in terms of \vec{i} and \vec{j}
(ii) the velocity of Q in terms of \vec{i} and \vec{j}
(iii) the velocity of P relative to Q in terms of \vec{i} and \vec{j}
(iv) the shortest distance between P and Q in the subsequent motion.
2. Ship A is 432 km due west of ship B.

Ship B is 135 km due west of lighthouse L.
A is travelling at a constant speed of $52 \mathrm{~km} / \mathrm{h}$ in the direction east α^{0} north, where $\tan \alpha=\frac{5}{12}$.

B is travelling due north at a constant speed of $20 \mathrm{~km} / \mathrm{h}$.

Find (i) the velocity of A in terms of \vec{i} and \vec{j}
(ii) the velocity of B in terms of \vec{i} and \vec{j}
(iii) the velocity of A relative to B in terms of \vec{i} and \vec{j}.

Ship A intercepts ship B after t hours.
(iv) Find the value of t.
(v) Find the distance from lighthouse L to the meeting point.
2. A river is 72 metres wide and has parallel banks.
A boat B departs from point p on the southern bank and lands at point r on the northern bank.

The actual velocity of B is
 $-4 \vec{i}+3 \vec{j} \mathrm{~m} / \mathrm{s}$.
Cyclist C travels due north at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ across a straight level bridge which spans the river.

Find

(i) the velocity of C in terms of \vec{i} and \vec{j}
(ii) the velocity of B relative to C in terms of \vec{i} and \vec{j}
(iii) the magnitude and direction of the velocity of B relative to C
(iv) the time it takes C to cross the river
(v) how much longer it will take B to cross the river.
2. Ship A is travelling east α° north with a constant speed of $39 \mathrm{~km} / \mathrm{h}$, where $\tan \alpha=\frac{5}{12}$.
Ship B is travelling due east with a constant speed of $16 \mathrm{~km} / \mathrm{h}$.

At 2 pm ship B is positioned 90 km due north of ship A.

(i) Express the velocity of ship A and the velocity of ship B in terms of \vec{i} and \vec{j}.
(ii) Find the velocity of ship A relative to ship B in terms of \vec{i} and \vec{j}.
(iii) Find the shortest distance between the ships.
2. (a) Two athletes A and B are running due east in a race.

At a certain instant athlete A is x metres from the finishing line and is running with a constant speed of $8 \mathrm{~m} / \mathrm{s}$. At this instant athlete B is 6 metres behind A and is running with a constant speed of $10 \mathrm{~m} / \mathrm{s}$.
B catches up with A at the finishing line, so that the race ends in a dead heat.
(i) Find the velocity of B relative to A .
(ii) Find the value of x.
(b) A ferry F is travelling due east with a constant speed of $12 \mathrm{~km} / \mathrm{hr}$.
A boat P is travelling in the direction α degrees east of north with a constant speed of $20 \mathrm{~km} / \mathrm{hr}$.
At noon P is 1.6 km due south of F and t minutes later P intercepts F .
(i) Find the velocity of P relative to F , in terms of \vec{i}, \vec{j} and α.

(ii) Find the value of α, correct to the nearest degree.
(iii) Find the value of t.

2004
2. (a) Ship A is travelling due north with a constant speed of $15 \mathrm{~km} / \mathrm{hr}$.

Ship B is travelling north-west with a constant speed of $15 \sqrt{2} \mathrm{~km} / \mathrm{hr}$.
(i) Write down the velocity of ship A and the velocity of ship B, in terms of \vec{i} and \vec{j}.
(ii) Find the velocity of ship A relative to ship B.
(iii) If ship A is 5.5 km due west of ship B at noon, at what time will ship A intercept ship B?
(b) Car P and car Q are travelling eastwards on a straight level road.
P has a constant speed of $20 \mathrm{~m} / \mathrm{s}$ and Q has a constant speed of $10 \mathrm{~m} / \mathrm{s}$.
(i) Find the velocity of P relative to Q .
(ii) At a certain instant car P is 100 m behind car Q .

Find the distance between the two cars 3.5 seconds later.
2. The velocity of ship A is $3 \vec{i}-4 \vec{j} \mathrm{~m} / \mathrm{s}$ and the velocity of ship B is $-2 \vec{i}+8 \vec{j} \mathrm{~m} / \mathrm{s}$.
(i) Find the velocity of ship A relative to ship B in terms of \vec{i} and \vec{j}.
(ii) Find the magnitude and direction of the velocity of ship A relative to ship B, giving the direction to the nearest degree.

At a certain instant, ship B is 26 km due east of ship A.
(iii) Show, on a diagram, the positions of ship A and ship B at this instant and show, also, the direction in which ship A is travelling relative to ship B.
(iv) Calculate the shortest distance between the ships, to the nearest km .
2. Ship A is travelling due west with a constant speed of $10 \mathrm{~km} / \mathrm{hr}$.

Ship B is travelling at a constant velocity.
At 1200 hours, the radar screen of ship A shows the position of ship B relative to ship A as $-2 \vec{i}-20 \vec{j}$ kilometres.
At 1400 hours, two hours later, the position of ship B relative to ship A is $8 \vec{i}+4 \vec{j}$ kilometres.
(i) Write down the velocity of ship A in terms of \vec{i} and \vec{j}.
(ii) Show that the change in the position of ship B relative to ship A between 1200 hours and 1400 hours is $10 \vec{i}+24 \vec{j}$ kilometres.
(iii) Find the velocity of ship B relative to ship A.
(iv) Find the speed and direction of ship B.

Give the direction to the nearest degree.
2. At a certain instant ship D is 16 km due south of ship C.

Ship C is travelling with a speed of $4 \sqrt{2} \mathrm{~km} / \mathrm{hr}$ in a north-westerly direction.
Ship D is travelling with a speed of $4 \sqrt{10} \mathrm{~km} / \mathrm{hr}$ to intercept C .
Let the velocity of D be $x \vec{i}+y \vec{j} \mathrm{~km} / \mathrm{hr}$.
(i) Write down the velocity of C in terms of \vec{i} and \vec{j}.
(ii) Find the value of x and the value of y.
(iii) How long does it take ship D to intercept ship C?

2000
2. (a) Ship A is travelling with a speed of $15 \mathrm{~km} / \mathrm{hr}$ in the direction due East. Ship B is travelling with a speed of $20 \mathrm{~km} / \mathrm{hr}$ in the direction due South.

Find the velocity of ship A relative to ship B.
(b) A river is 100 m wide and is flowing with a speed of $2 \mathrm{~m} /$ banks. The speed of a swimmer in still water is $3 \mathrm{~m} / \mathrm{s}$.
(i) What is the shortest time it takes the swimmer to swim across the river?
(ii) What direction should the swimmer take so as to swim straight across to a point directly opposite?
How long will it then take the swimmer to cross to this point?

2004 (a)
(i) $\mathrm{V}_{\mathrm{A}}=0 \mathrm{i}+15 \mathrm{j}$
$V_{B}=-15 i+15 j$
(ii) $\mathrm{V}_{\mathrm{AB}}=15 \mathrm{i}+0 \mathrm{j}$
(iii) Time $=12: 22$

2010
(i) $\mathrm{Vc}=0 \mathrm{i}+3 \mathrm{j}$
(ii) $\mathrm{Vbc}=5 \mathrm{i}+9 \mathrm{j}$
(iii) $|\mathrm{Vbc}|=10.3$, direction $=\mathrm{E} 60.9^{0} \mathrm{~N}$
(iv) Time $=20 \mathrm{~s}$
(v) 260 m

2009
(i) $\mathrm{V}_{\mathrm{P}}=0 \mathrm{i}+20 \mathrm{j}$
(ii) $\mathrm{V}_{\mathrm{Q}}=-10 \mathrm{i}-10 \mathrm{j}$
(iii) $\mathrm{V}_{\mathrm{PQ}}=10 \mathrm{i}+30 \mathrm{j}$
(iv) Shortest Distance $=47.43 \mathrm{~km}$

2008

(i) $\mathrm{V}_{\mathrm{A}}=48 \mathrm{i}+20 \mathrm{j}$
(ii) $\mathrm{V}_{\mathrm{B}}=0 \mathrm{i}+20 \mathrm{j}$
(iii) $\mathrm{V}_{\mathrm{AB}}=48 \mathrm{i}+0 \mathrm{j}$
(iv) Time $=9$ hours
(v) Distance $=225 \mathrm{~km}$

2007

(i) $\mathrm{V}_{\mathrm{c}}=0 \mathrm{i}+4 \mathrm{j}$
(ii) $\mathrm{V}_{\mathrm{BC}}=-4 \mathrm{i}-1 \mathrm{j}$
(iii) Speed $=4.12 \mathrm{~m} \mathrm{~s}^{-1}, \theta=14.04^{0}$ with the bank
(iv) time $=18 \mathrm{~s}$
(v) time $=24 \mathrm{~s} \Rightarrow$ required time $=6 \mathrm{~s}$

2006

(i) $\mathrm{V}_{\mathrm{A}}=36 \mathrm{i}+15 \mathrm{j}$
$V_{B}=16 i+10 j$
(ii) $\mathrm{V}_{\mathrm{AB}}=20 \mathrm{i}+15 \mathrm{j}$
(iii) Shortest Distance $=72 \mathrm{~km}$

2004 (b)
(i) $\mathrm{V}_{\mathrm{PQ}}=10 \mathrm{i}+0 \mathrm{j}$
(ii) Distance $=65 \mathrm{~m}$

2003

(i) $\mathrm{V}_{\mathrm{AB}}=5 \mathrm{i}-12 \mathrm{j}$
(ii) Magnitude $=13 \mathrm{~m} \mathrm{~s}^{-1}$

Direction $=67^{\circ}$ south of east (iii)
(iv) Shortest distance $=24 \mathrm{~km}$

2002

(i) $\mathrm{V}_{\mathrm{A}}=-10 \mathrm{i}+0 \mathrm{j}$
(ii)
(iii) $\mathrm{V}_{\mathrm{AB}}=5 \mathrm{i}+12 \mathrm{j}$
(iv) Speed $=13 \mathrm{~km} / \mathrm{hr}$,

Direction $=67^{\circ} \mathrm{N}$ of W

2001

(i) $\mathrm{v}_{\mathrm{C}}=-4 \mathrm{i}+4 \mathrm{j}$
(ii) $y=12$
(iii) $\mathrm{t}=2$

2000 (a)
$\mathrm{V}_{\mathrm{AB}}=15 \mathrm{i}+20 \mathrm{j}$

2000 (b)

(i) time $=100 / 3 \mathrm{~s}$
(ii) Direction: $\sin \alpha=2 / 3$ time $=100 / \sqrt{ } 5$

2005 (a)

(i) $\mathrm{V}_{\mathrm{BA}}=2 \mathrm{i}$
(ii) $\mathrm{x}=24 \mathrm{~m}$

2005 (b)

(i) $\mathrm{Vpf}=(20 \sin \alpha-12) \mathrm{i}+20 \cos \alpha \mathrm{j}$
(ii) $\alpha=37^{0}$
(iii) $\mathrm{t}=0.1 \mathrm{~h}$ or 6 minutes

